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The axisymmetric motion of an inviscid, rotating liquid over a prescribed stream 
surface, say S ,  is constructed from assumed values of the velocity and azimuthal 
vorticity on 8. The hypothesis of unseparated flow, which implies continuity of 
the vorticity on S ,  is shown to imply that: (a )  the azimuthal vorticity and azi- 
muthal circulation (relative to the basic flow) must be simply proportional to 
the perturbation stream function in the exterior of S ;  (b )  the exterior field 
exhibits a dipole behaviour far upstream of the body, thereby satisfying Long’s 
hypothesis of no upstream disturbance. 

1. Introduction 
We consider the axisymmetric flow of an unbounded, inviscid, rotating liquid 

past a prescribed stream surface, say S ,  of axial length 1 and maximum diameter 
81. Let U and Q denote the translational and angular velocities of the basic 
flow and 

the intrinsic scale. The flow is characterized by the inverse Rossby number, 

L E U / ( Z Q )  (1.1) 

k = ZQl/U = l/L, (1.2) 

which appears as the length of the body relative to L, and the slenderness ratio, 6. 
We assume that k8 has a maximum order of magnitude of unity. 

The boundary-value problem posed by the preceding description is considered 
in some detail in an earlier paper (Miles 1969a, hereinafter referred to as I, 
followed by the appropriate section or equation number) on the basis of Long’s 
(1953) hypothesis that the flow is uniform far upstream of the body. This 
hypothesis, which precludes the existence of a Taylor column, is controversial 
(see I for discussion and references), but the prevailing opinion appears to be 
expressed by Greenspan (1968, p. 224): “Though the last word has yet to be 
spoken, it seems that a columnar formation is an intrinsic feature of rotating 
flows and cannot be dismissed. The assumption of no upstream disturbance 
must be interpreted instead as an approximation appropriate to certain situa- 
tions.” We show, in the following development, that a columnarformation cannot 
appear in unseparated flow, in which all particles on the stream surface S originate 
on the upstream axis. 
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The analysis of I is based on the representation of S by an axial distribution 
of dipoles of density f(z), which is determined implicitly by an integral equation. 
Long's hypothesis is supported, in this context, by the solution of the initial- 
value problem for a dipole in a rotating flow (Miles 1969b), which yields a steady- 
state limit equivalent to that of I. This support is, however, deficient in two 
respects: (a)  the solution of the initial-value problem neglects second-order per- 
turbations in the equations of motion; ( b )  the representation of S by an axial 
distribution of dipoles appears to imply that the exterior solution can be con- 
tinued analytically into the interior of AS (Stewartson, private communication). 
We avoid these difficulties herein by constructing the steady-state solution in 
the exterior of S in terms of the tangential velocity and azimuthal vorticity on S. 
We then show that continuity of this vorticity, which is implied by the hypothesis 
of unseparated flow, implies that the solution must be of Long's type, in which 
both the radial moment of the azimuthal vorticity and the azimuthal circulation 
relative to the basic flow are simply proportional to the perturbation stream 
function; this, in turn, implies a dipole behaviour far upstream of the body. The 
resulting problem then is reduced to an integral equation for the meridional 
velocity on 8. 

2. Equations of motion 

velocity and vorticity vectors in the forms 
We choose L and U as scales of length and velocity and pose the position, 

and 

where the triad {-, -, -} comprises the axial, radial and azimuthal components 
of a vector, subscripts imply partial differentiation, Y is the Stokes stream 
function, I' is the azimuthal circulation, and xlr is the azimuthal vorticity. We 
also introduce the column matrix (+ is not a vector in the polar co-ordinate space) 

+(z, = {$, y, x> = {Y - Qr2, r - Br2,  x}, (2.4) 

where $ and y are perturbations of Y and r with respect to the uniform flow. 
We emphasize that our notation differs from that of I both in the choice of 
characteristic length (L  herein .us. Z in I) and in the sign of @. The present choice. 
of sign simplifies the subsequent specialization of the solution; see (3.4) below. 

The equations satisfied by Y and I' are developed by Batchelor (1967, §7.5), 

( 2 . 5 ~ )  
and may be transformed to 

(2 .5b)  

( 2 . 5 ~ )  

9$+x = 0, 

w, y ) / a ( x ,  r )  = 0, 

a(x, Y)/~(x ,  r )  + 2r-l(YZx - rr,) = 0, and 

where 9 = 8; + ra7r-lar, (2.6) 

a, and a, imply partial differentiation, and the first terms in each of (2 .5b )  and 
( 2 . 5 ~ )  are Jacobians. Neglecting terms of second order in $, y, and x in (2 .5b ,  c) 
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on the alternative hypotheses that they are either small or vanish identically, 
we obtain the linear equations 

BnlC.+X = 0, @,- y2 = 0, y,-x, = 0. (2 .7a ,  b ,  c )  

We seek the solution of (2 .5 )  for the flow in the exterior of a closed stream surface 
S of axial length L with an upstream stagnation point at x = r = 0. Invoking this 
definition of S and the requirements that the velocity, vorticity, and perturba- 
tions in the total linear and angular momenta of the fluid be bounded, we obtain 

( 2 . 8 a )  

Y(x, Y) = 0 on S [0 < x Q L, Y = E(z ) ]  ( 2 . 8 b )  

+(x,O) = 0 (x < 0 or x > k), 

and +(X,Y) +. 0 ((X”YZ)& +. a). (2.8c) 

3. General solution 

[obtained from (2 .5b ,  c ) ;  see Batchelor (1967, § 7 . 5 ) ]  
The most general solution of (2.5) is governed by ( 2 . 5 a )  and the integrals 

I? = r(Y) and x = r(Y’)r’(Y) - - -T~F(Y ’ ) ,  (3.1 a, b )  

where H is the dimensionless, total head. Invoking (2 .8a ,  b )  and the fact that, 
by definition, particles on X originate on r = 0,  we obtain r(0) = 0. Invoking 
this condition in ( 3 . l b )  and combining the result with (2 .8b ) ,  we obtain the 
boundary condition(s) 

+ = -{*,$,IIA}.R2 on S [HA = H‘(Y?) on Y’ = 01. (3 .2 )  

We remark that HA is constant on S by virtue of the hypothesis that the flow 
is unseparated (see discussion a t  end of $ 4 ) .  

(3 .3a ,  b )  r(Y) = y P  and H’(YP) = 9 Choosing 

implies + = { 1 , 1 , 1 } @  z? I$ (3 .4 )  

and gp+nlC. = 0, ( 3 . 5 )  

which is a special case of (2 .7 )  for which the second-order terms in (2 .5)  vanish 
identically. Conversely, (3 .4)  implies (3 .3 )  and (3 .5 ) .  The hypothesis of no up- 
stream disturbance (+ + 0 as x -+ -00) also implies (3 .3)  and hence (3 .4 ) ,  but 
(3 .4 )  does not necessarily imply the absence of an upstream disturbance [in 
particular, (3 .5)  admits the cylindrical solution $ = r 4 ( r ) ] .  

4. Solution of linear equations 
Let V+ and V- denote the exterior and interior of S and ++ and +- denote 

exterior and interior solutions of (2 .7 )  such that ++ = 0 in V,. We determine ++ 
(subsequently omitting the + subscript) in terms of assumed values of + and 
v on X and show that it is necessarily of the form (3 .4 ) ,  by virtue of which it 
satisfies (2.5). 
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Let 9 and 2 be the Fourier- and Hankel-transform operators defined by 

Transforming (2.7) on the hypothesis that Jr = 0 in V-, in consequence of which 
the lower limit of ( 4 . 2 ~ )  must be replaced by R(z), we obtain 

M 9 % +  = C, 

a2+p 0 

where M = [ -ia ia 
0 -ia ia 

is a square matrix, and 

C = S{PJo$-  J1$,.+ R'Jl$X+(R'J1$)', 

R'J1($-7% R'Jl(y-X)l, (4.5) 

is a column matrix. All terms in the Fourier operand of C are evaluated at r = R(x) ,  
the prime implies differentiation with respect to x on S [but $z =_ ax$(x , r ) ] ,  
and the argument of J ,  and J1 therein is PR. 

Invoking (3.2) and ( 4 . 1 ~ )  in (4.5)) remarking that 

(r+$T)dx-$xdr = r(v/U).ds = Rqds on S ,  (4.6) 

where ds is a meridional element of arc and q is the (dimensionless) meridional 
velocity on S, and integrating the terms in PJ0$, Jl$,., and (R'Jl$)' by parts, 
we transform (4.5) to 

c = { ( a 2 + ~ 2 ) P - Q , 0 7 i a ( 2 H ; - l ) P } ,  (4.7) 

where P = ',(ia)-l~oke-"""J1(pR) R2R'dx (4 .8a)  

= t,8-1joke-iaX J2(PR) R2dx (4 .8b)  

and & = e-iax Jl(,8R) Rqds. (4.9) s 

Calculating the inverse of M and taking its product with C, we obtain 

M-lC = I(2HhP- &) (a2+P2- l)-'+ P{l71,2H;}. 

Taking the inverse transform of P, as given by (4.8b), we obtain 

(4.10) 

(4.1 1 b )  

= Qr2@[R(x)-r] ( R  = 0 if x < 0 or x > k ) ,  (4.1 1 c) 
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where $j is Heaviside's step function. It follows that only the first term on the 
right-hand side of (4.10) contributes to ++, which therefore must be of the form 
(3.4); this, in turn, implies Hh = $in (3.2). Invoking these conditions, substituting 
P and Q from (4.8b) and (4.9), and then invoking (4.lb) and (4.2b), we obtain 

+ I$ = 1&'-19-1(P-Q) ( a 2 + / ? 2 -  I)-' (4.12a) 

where 9@, P )  = PRJl(PR) q(dsldx) - Tt-R2J2(PR). (4.13) 

The contributions to the a integral in (4.12b) may be derived from the poles 
at  the zeros of a2 + p2 - 1. We infer from a consideration of viscous effects (or 
in the context of linearized theory, from a consideration of the initial-value 
problem) that these zeros lie in $a > 0 for 0 < /? < 1; in brief, 

a = 2 ( l -p) t+iO+ (0 < p < 1) ( 4 . 1 4 ~ )  

= * i ( p -  1)) (p > 1). (4.14b) 

Closing the contour of integration in $a 5 0 for x - 5 0 and invoking Jordan's 
lemma and Cauchy 's residue theorem, we obtain 

The result (4.15) bears a close resemblence to I (2.10) and points to an error in 
that result, which, as stated, is not valid for 0 < x < k (0  < x < 1 in I). Correcting 
that error (which does not affect any of the other results in I) and allowing for 
the difference in the sign of q+ and the choice of characteristic length, we obtain $ 
in the form (4.15) with g(x, P )  replaced by 

gdx, P )  = P 2 f m  (4.16) 

where f(x) is the dipole density defined by I(2.2). We emphasize that (4.16) does 
not imply a direct equivalence between f(x) and g(x,p),  as given by (4.13). The 
only direct equivalence that can be imposed u priori is that the two representa- 
tions of $ be identical in V+ and on S. 

Letting x -+ -a in (4.15), we obtain 

where 

(4.17) 

(4.18) 

is the dipole moment defined in I (after allowing for the difference of characteristic 
length). 

We infer from (4.17) that Long's hypothesis of no upstream influence is 
satisfied under the hypothesis of unseparated flow. This hypothesis enters the 
analysis crucially through the corresponding assumption that HA is constant in 
(3.2). Separated flow implies a discontinuity in H'(Y) across the stream surface 
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that emanates from the separation ring. This, in turn, implies that x is not 
simply proportional to r2 on X and leads to a term on the right-hand side of 
(4.10) that is proportional to Ax(ia)-l (a2+P2- l)-l, where A x  is the jump in x 
a t  the separation point. It then is impossible to deal with the pole a = 0 with- 
out a more detailed consideration of viscous effects, and it is no longer true 
that Jr has the form (3.4). 
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